ljfc.net
当前位置:首页 >> sigmoiD 函数 >>

sigmoiD 函数

Sigmoid函数,即f(x)=1/(1+e-x).神经元的非线性作用函数. 人工神经网络的学习算法-BP算法 神经网络的学习是基于一组样本进行的,它包括输入和输出(这里用期望输出表示),输入和输出有多少个分量就有多少个输入和输出神经元与之对应.最初神经网络...

(1)对于深度神经网络,中间的隐层的输出必须有一个激活函数。否则多个隐层的作用和没有隐层相同。这个激活函数不一定是sigmoid,常见的有sigmoid、tanh、relu等。 (2)对于二分类问题,输出层是sigmoid函数。这是因为sigmoid函数可以把实数域...

使用LOG()函数LOG(number,base)Number为您想要的对数之正实数.Base为对数的基底数值.如果省略base,则假设其值为10.范例=LOG(10)10的对数(1)=LOG(8,2)8以2为底的对数(3)=LOG(86,2.7182818)86以e为底的对数(4.454347)

PDF是概率密度函数,针对连续型随机变量而言,一般写法是一个函数,如f(x)=e^(-x), 积分得到∫f(x)dx=1. PMF是概率质量函数,是针对离散型随机变量而言。一般写法是写成对应每一个特定取值的概率,如P{x=xi}=1/15.

traingdm是带动量的梯度下降法,trainlm是指L-M优化算法,trainscg是指量化共轭梯度法,除此之外还有traingdx、traingda等,都是权值的训练算法。看MATLAB结合神经网络的基础书上都有介绍。tansig和logsig 统称Sigmoid函数,logsig是单极性S函数...

应该是一样的,同一个概念

Sigmoid函数是一个在生物学中常见的S型的函数,也称为S形生长曲线。sigmoid函数是一个良好的阈值函数,连续,光滑,严格单调Sigmoid函数,即f(x)=1/(1+e-x).神经元的非线性作用函数.人工神经网络的学习算法-BP算法神经网络的学习是基于一组样

(1)对于深度神经网络,中间的隐层的输出必须有一个激活函数。否则多个隐层的作用和没有隐层相同。这个激活函数不一定是sigmoid,常见的有sigmoid、tanh、relu等。 (2)对于二分类问题,输出层是sigmoid函数。这是因为sigmoid函数可以把实数域...

Sigmoid函数是一个在生物学中常见的S型的函数,也称为S形生长曲线。 sigmoid函数是一个良好的阈值函数,连续,光滑,严格单调 Sigmoid函数,即f(x)=1/(1+e-x).神经元的非线性作用函数. 人工神经网络的学习算法-BP算法 神经网络的学习是基于一组样...

多元回归分析 用回归方程定量地刻画一个应变量与多个自变量间的线性依存关系,称为多元线性回归(multiple linear regression),简称多元回归(multiple regression). logistic回归的分析 logistic回归属于概率型回归,可用来分析某类事件发生的概率...

网站首页 | 网站地图
All rights reserved Powered by www.ljfc.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com